ESS2.A: Earth Materials and Systems

How do Earth's major systems interact?

K-2 3-5 6-8 9-12
Wind and water change the shape of the land. Four major Earth systems interact. Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, organisms, and gravity break rocks, soils, and sediments into smaller pieces and move them around. Energy flows and matter cycles within and among Earth’s systems, including the sun and Earth’s interior as primary energy sources. Plate tectonics is one result of these processes. Feedback effects exist within and among Earth’s systems.

Grade Band Endpoints for ESS2.A

from A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (pages 180-182)

By the end of grade 2. Wind and water can change the shape of the land. The resulting landforms, together with the materials on the land, provide homes for living things. 

By the end of grade 5. Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. Rainfall helps shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. Human activities affect Earth’s systems and their interactions at its surface. 

By the end of grade 8. All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms. The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. 

By the end of grade 12. Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. A deep knowledge of how feedbacks work within and among Earth’s systems is still lacking, thus limiting scientists’ ability to predict some changes and their impacts. 

Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. The top part of the mantle, along with the crust, forms structures known as tectonic plates (link to ESS2.B). Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth’s interior and the gravitational movement of denser materials toward the interior. The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. 

Introduction to ESS2.A

from A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (pages 179-180)

Earth is a complex system of interacting subsystems: the geosphere, hydrosphere, atmosphere, and biosphere. The geosphere includes a hot and mostly metallic inner core; a mantle of hot, soft, solid rock; and a crust of rock, soil, and sediments. The atmosphere is the envelope of gas surrounding the planet. The hydrosphere is the ice, water vapor, and liquid water in the atmosphere, ocean, lakes, streams, soils, and groundwater. The presence of living organisms of any type defines the biosphere; life can be found in many parts of the geosphere, hydrosphere, and atmosphere. Humans are of course part of the biosphere, and human activities have important impacts on all of Earth’s systems. 

All Earth processes are the result of energy flowing and matter cycling within and among Earth’s systems. This energy originates from the sun and from Earth’s interior. Transfers of energy and the movements of matter can cause chemical and physical changes among Earth’s materials and living organisms. 

Solid rocks, for example, can be formed by the cooling of molten rock, the accumulation and consolidation of sediments, or the alteration of older rocks by heat, pressure, and fluids. These processes occur under different circumstances and produce different types of rock. Physical and chemical interactions among rocks, sediments, water, air, and plants and animals produce soil. In the carbon, water, and nitrogen cycles, materials cycle between living and nonliving forms and among the atmosphere, soil, rocks, and ocean. 

Weather and climate are driven by interactions of the geosphere, hydrosphere, and atmosphere, with inputs of energy from the sun. The tectonic and volcanic processes that create and build mountains and plateaus, for example, as well as the weathering and erosion processes that break down these structures and transport the products, all involve interactions among the geosphere, hydrosphere, and atmosphere. The resulting landforms and the habitats they provide affect the biosphere, which in turn modifies these habitats and affects the atmosphere, particularly through imbalances between the carbon capture and oxygen release that occur in photosynthesis, and the carbon release and oxygen capture that occur in respiration and in the burning of fossil fuels to support human activities. 

Earth exchanges mass and energy with the rest of the solar system. It gains or loses energy through incoming solar radiation, thermal radiation to space, and gravitational forces exerted by the sun, moon, and planets. Earth gains mass from the impacts of meteoroids and comets and loses mass from the escape of gases into space. 

Earth’s systems are dynamic; they interact over a wide range of temporal and spatial scales and continually react to changing influences, including human activities. Components of Earth’s systems may appear stable, change slowly over long periods of time, or change abruptly, with significant consequences for living organisms. Changes in part of one system can cause further changes to that system or to other systems, often in surprising and complex ways. 

Performance Expectations Associated with ESS2.A


 Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.  Visit the official NGSS website.